Nous utilisons des cookies pour améliorer votre expérience. Pour nous conformer à la nouvelle directive sur la vie privée, nous devons demander votre consentement à l’utilisation de ces cookies. En savoir plus.
La stratégie du 2e Discours
SFP - EAN : 9782711650491
Édition papier
EAN : 9782711650491
Paru le : 30 mars 2009
11,00 €
10,43 €
Disponible
Pour connaître votre prix et commander, identifiez-vous
Notre engagement qualité
-
Livraison gratuite
en France sans minimum
de commande -
Manquants maintenus
en commande
automatiquement -
Un interlocuteur
unique pour toutes
vos commandes -
Toutes les licences
numériques du marché
au tarif éditeur -
Assistance téléphonique
personalisée sur le
numérique -
Service client
Du Lundi au vendredi
de 9h à 18h
- EAN13 : 9782711650491
- Réf. éditeur : 495049
- Collection : BULLETIN SFP
- Editeur : SFP
- Date Parution : 30 mars 2009
- Disponibilite : Disponible
- Barème de remise : NS
- Nombre de pages : 36
- Format : H:240 mm L:155 mm E:1 mm
- Poids : 150gr
- Résumé : Comme on sait, le 2 e Discours – Discours sur l’origine et les fondements de l’inégalité parmi les hommes – répond à une question posée par l’Académie de Dijon : « Quelle est l’origine de l’inégalité parmi les hommes, et si elle est autorisée par la loi naturelle? ». Il n’est guère facile de déterminer quelle est la réponse de Rousseau. D’après le titre de son Discours , lequel mentionne la question de l’origine et la question des fondements, on peut penser qu’il répond parfaitement à une question qui comprend elle-même deux questions : la question de l’origine et la question de l’autorisation par la loi naturelle. Encore faudrait-il être sûr que la question rousseauiste de l’origine, qui n’est pas celle de l’origine réelle mais celle d’une origine hypothétique, et la question rousseauiste des fondements, qui n’est pas celle de l’autorisation par la loi naturelle mais celle d’une légitimité à multiples facettes, coïncident toutes deux avec les deux questions qui sont comprises dans la question initiale de l’Académie. Or rien n’est moins sûr.