CALCUL DIFFERENTIEL TOPOLOGIQUE ELEMENTAIRE

Calvage Mounet - EAN : 9782916352237
BERTRAM WOLFGANG
Édition papier

EAN : 9782916352237

Paru le : 5 janv. 2012

33,40 € 31,66 €
Epuisé
Pour connaître votre prix et commander, identifiez-vous
Manquant sans date
Notre engagement qualité
  • Benefits Livraison gratuite
    en France sans minimum
    de commande
  • Benefits Manquants maintenus
    en commande
    automatiquement
  • Benefits Un interlocuteur
    unique pour toutes
    vos commandes
  • Benefits Toutes les licences
    numériques du marché
    au tarif éditeur
  • Benefits Assistance téléphonique
    personalisée sur le
    numérique
  • Benefits Service client
    Du Lundi au vendredi
    de 9h à 18h
  • EAN13 : 9782916352237
  • Réf. éditeur : G22038
  • Collection : MATHEMATIQUES E
  • Editeur : Calvage Mounet
  • Date Parution : 5 janv. 2012
  • Disponibilite : Manque sans date
  • Barème de remise : NS
  • Nombre de pages : 290
  • Format : 1.70 x 15.70 x 23.50 cm
  • Poids : 483gr
  • Interdit de retour : Retour interdit
  • Résumé :

    Le calcul différentiel, dont l'origine remonte à Isaac Newton et Gottfried W. Leibniz, est un chapitre fondamental que les étudiants de mathématiques, de physique, et plus généralement, de toute science exacte, se doivent de maîtriser. Pour autant, c'est aussi un outil indispensable pour la recherche mathématique, non seulement en analyse, mais également en géométrie et en algèbre.

    Le présent ouvrage offre une approche nouvelle du sujet, qui en rend l'accès aisé le plus vite possible, c'est-à-dire dès la deuxième année de faculté, une fois que l'on a acquis l'essentiel de l'analyse des fonctions d'une variable, et sans attendre les espaces de Banach généraux. Le renoncement à la dimension infinie ouvre paradoxalement la voie à une approche plus générale, permettant une énorme souplesse quant au corps de base, pour inclure aux côtés de R et C, les corps p-adiques et même la caractéristique positive. Séparant bien ce qui est propre au calcul différentiel de ce qui est indispensable au calcul intégral, Wolfang Bertram nous offre là une monographie originale, qui fera évoluer les idées sur l'enseignement de la matière. L'ouvrage se destine à deux publics, à savoir celui des étudiants, et à un public plus savant, qui découvrira un territoire où des recherches actives et passionnantes sont en train de prendre corps.

    Les étudiants trouveront une présentation rigoureuse et simple d'une matière souvent considérée comme difficile, et les experts découvriront un regard nouveau sur une thématique classique. De nombreux exercices, en grande partie inédits, permettent d'approfondir ce regard et d'offrir à tous une réconfortante vision de l'unité des mathématiques.

Haut de page
Copyright 2025 Cufay. Tous droits réservés.